APOSTILA
CONCURSO PÚBLICO

Operador de Estação de Tratamento de Água e Esgoto
SUMÁRIO

APRESENTAÇÃO .. 7

1. SANEAMENTO .. 8
 1.1 Conceitos e Competências na Área de Saneamento ... 8

2. A ÁGUA E O CICLO HIDROLÓGICO ... 10
 2.1 A Água ... 10
 2.2 O Ciclo Hidrológico ... 11
 2.3 Ciclo do Uso da Água .. 12

3. SISTEMA DE ABASTECIMENTO DE ÁGUA .. 13
 3.1 Captação ... 13
 3.2 Adução de Água Bruta ... 13
 3.3 Tratamento de Água .. 13
 3.4 Reservação .. 13
 3.5 Distribuição da Água Tratada ... 14
 3.6 Mediçao e Fornecimento ao Usuário .. 14

4. SISTEMA DE ESGOTAMENTO SANITÁRIO .. 15
 4.1 Coleta .. 15
 4.2 Afastamento e Transporte ... 15
 4.3 Tratamento de Esgoto .. 15
 4.4 Disposição Final .. 15

5. O PAPEL DO OPERADOR DE ESTAÇÃO DE ÁGUA E ESGOTO NAS ATIVIDADES DE SANEAMENTO ... 17

6. TÓPICOS TÉCNICOS RELATIVOS ÀS ATIVIDADES DO OPERADOR DE ETA E ETE .. 18
 6.1 Noções sobre Hidráulica .. 18
 6.1.1 Conceito .. 18
 6.1.2 Vazão (Q) ... 18
 6.1.3 Volume (V) .. 19
 6.1.4 Velocidade de Escoamento (v) .. 19
 6.1.5 Tempo (t) .. 19
 6.1.6 Área de Escoamento (A) .. 20
 6.1.7 Pressão (h) .. 20

7. TRATAMENTO DE ÁGUA .. 21
 7.1 Conceitos Básicos ... 21
 7.2 Parâmetros de Qualidade da Água .. 22
 7.2.1 Parâmetros Físicos .. 22
 7.2.2 Parâmetros Químicos .. 23
 7.2.3 Parâmetros Biológicos .. 26
 7.3 Padrões de Potabilidade ... 27
 7.4 Tecnologia de Tratamento ... 27
7.4.1. Controle do Processo de Tratamento
7.4.1.1. Controle Analítico
7.4.1.2. Controle Operacional
8. TRATAMENTO DE ESGOTO
8.1. Esgotos Domésticos
8.2. Objetivos do Tratamento de Esgoto
8.3. Sistemas de Esgotamento Sanitário
8.4. Concepção do Sistema
8.5. Etapas de Tratamento
8.5.1. Fluxograma do Sistema de Tratamento
8.5.2. Tratamento Preliminar (remoção de sólidos grosseiros e areia)
8.5.2.1. Comporta de entrada/canal de by-pass
8.5.2.2. Gradeamento grosso (manual) e Gradeamento fino (mechanizado)
8.5.2.3. Desarenadores mecanizados
8.5.2.4. Calha Parshall
8.5.3. Tratamento Secundário (remoção de matéria orgânica – DBO e sólidos suspensos)
8.5.3.1. Reator Anaeróbio de Fluxo Ascendente com Manta de Lodo (UASB)
8.5.4. Tratamento Terciário (remoção de nutrientes – nitrogênio amoniacal e fósforo)
8.5.4.1. Filtro Biológico Aerado Submerso (FBAS)
8.5.4.2. Câmara de Mistura Rápida/Floculador/Decantador Secundário
8.5.5. Desinfecção (eliminação de agentes patogênicos – Coliformes termotolerantes)
8.5.5.1. Câmara de Contato
8.5.6. Estruturas Anexas e acessórias
8.5.6.1. Filtro de carvão ativado com queimador de gases (flare)
8.5.6.2. Elevatória de reciclo
8.5.6.3. Tanque de acúmulo e recalque de lodo
8.5.6.4. Casa da centrífuga
8.5.6.5. Casa de química
8.5.6.6. Administração, laboratório, vestiário e guarita
9. LABORATÓRIO BÁSICO – TRATAMENTO DE ÁGUA E ESGOTO
9.1. Vidraria Laboratorial Básica
9.1.1. Acessórios
9.2. Equipamentos Laboratoriais Básicos
9.3. Técnicas Laboratoriais
9.3.1. Medidas de Volume
9.3.2. Pipetar
9.3.3. Titular
9.4. Regras Gerais de Segurança no Laboratório
10. ASPECTOS DE SEGURANÇA DO TRABALHO NA OPERAÇÃO DE ETAS E ETES
10.1. Riscos à Saúde no Trabalho em ETE's... 54
10.2. Riscos à Saúde no Trabalho em ETA's... 56
10.3. Equipamentos de Proteção Individual... 56
11. REFERÊNCIAS BIBLIOGRÁFICAS.. 58
LISTA DE FIGURAS

Figura 1: Composição do saneamento básico ..9
Figura 2: Água 100%...11
Figura 3: Água Doce 3% ...11
Figura 4: Ciclo Hidrológico ..11
Figura 5: Esquema simplificado – Sistema de Abastecimento de Água e Sistema de Esgotamento Sanitário ...16
Figura 6: Tecnologia de tratamento ...29
Figura 7: ETE TEGA – Planta geral do parque da ETE TEGA..............................35
Figura 8: ETE TEGA – Fluxograma do Sistema de Tratamento.............................36
Figura 9: Vidraria Laboratorial Básica ...46
Figura 10: Acessórios ..48
Figura 11: Equipamentos laboratoriais básicos ...50
Figura 12: Medidor de Volume ..51
Figura 13: Pipetas ...52
LISTA DE QUADROS

Quadro 1: Unidades de medida de vazão .. 19
Quadro 2: Unidades de medida de pressão ... 20
CONCURSO PÚBLICO – APOSTILA OPERADOR DE ETA E ETE

APRESENTAÇÃO

É com satisfação que o Serviço Autônomo Municipal de Água e Esgoto – SAMAE, oferece a você, candidato (a), esta apostila preparatória para o concurso público para o cargo de provimento efetivo de Operador de Estação de Tratamento de Água e Esgoto.

O principal objetivo deste material didático é propiciar conhecimento básico específico na área de atuação dentro do SAMAE.

O Serviço Autônomo Municipal de Água e Esgoto, SAMAE, sediado à Rua Pinheiro Machado, 1615, Centro, Caxias do Sul, RS, é uma Autarquia Pública Municipal, criada pela Lei nº 1474, de 05 de janeiro de 1966, alterada pela Lei nº 6.158, de 17 de dezembro de 2003, dispondo de autonomia econômico-financeira e administrativa dentro dos limites fixados.

A Autarquia exerce a sua ação em todo o município de Caxias do Sul, RS, competindo-lhe, com exclusividade, atividades relacionadas com os sistemas públicos, tendo por finalidade operar, manter, conservar e explorar, diretamente, os serviços de abastecimento de água e de coleta, afastamento e tratamento de esgoto sanitário.
1. SANEAMENTO

1.1 Conceitos e Competências na Área de Saneamento

Segundo a Organização Mundial da Saúde - OMS, saneamento é o controle de todos os fatores do meio físico que exercem ou podem exercer efeitos nocivos sobre o bem-estar físico, mental e social do homem. De outra forma, pode-se dizer que saneamento, caracteriza o conjunto de ações socioeconômicas que tem por objetivo alcançar Salubridade Ambiental.

A Lei define que SANEAMENTO BÁSICO é o conjunto dos serviços, infraestruturas e instalações operacionais de:

a) abastecimento de água potável;

b) esgotamento sanitário;

c) limpeza urbana e manejo de resíduos sólidos; e

d) drenagem e manejo das águas pluviais urbanas.

Dentre os serviços formadores do Saneamento, é incumbência do Serviço Autônomo Municipal de Água e Esgoto - SAMAE, o desempenho dos serviços de ABASTECIMENTO DE ÁGUA e ESGOTAMENTO SANITÁRIO, os quais também constituem o que se chama de Saneamento Básico, sendo que este é definido pela Lei nº 11.445, de 05 de janeiro de 2007, que é a Lei de Diretrizes Nacionais para o Saneamento Básico.
Figura 1: Composição do saneamento básico
2. A ÁGUA E O CICLO HIDROLÓGICO

2.1. A Água

A água é uma substância química cujas moléculas são formadas por dois átomos de hidrogênio ligados a um átomo de oxigênio, sendo sua fórmula química dada por H_2O. Nesta fórmula a água é pura, isto é, sem nenhuma substância dissolvida. Já a água na natureza quase sempre se apresenta com a presença de algumas substâncias químicas dissolvidas, formando soluções. A água será considerada potável quando apresentar concentrações limitadas e regulamentadas por legislação destas substâncias químicas dissolvidas. Sendo, portanto, uma solução praticamente incolor, agradável aos olhos e ao paladar e não oferecendo riscos à saúde dos consumidores.

A água é o constituinte inorgânico mais abundante na matéria viva: no homem, mais de 70% do seu peso é constituido por água, e, em certos animais aquáticos, essa percentagem sobe para 98%. A água é fundamental para a manutenção da vida, razão pela qual é importante saber como ela se distribui no planeta e como ela circula de um meio para outro.

A água abrange quase $\frac{4}{5}$ da superfície terrestre; desse total, 97% referem-se aos mares e os 3% restantes às águas doces. Dentre as águas doces, 2,7% são formadas por geleiras, vapor de água e lençóis existentes em grandes profundidades (mais de 800m), não sendo economicamente viável seu aproveitamento para o consumo humano.

Em consequência, constata-se que somente 0,3% do volume total de água do planeta pode ser aproveitado para nosso consumo, sendo 0,01% encontrada em fontes de superfície (rios e lagos) e o restante, ou seja, 0,29%, em fontes subterrâneas (poços ou nascentes).

A água subterrânea vem sendo acumulada no subsolo há séculos e somente uma fração desprezível é acrescentada anualmente através de chuvas ou retirada pelo homem. Em compensação, a água dos rios é renovada cerca de 31 vezes, anualmente.
2.2. O Ciclo Hidrológico

Também conhecido como “O Ciclo da Água”, é o contínuo movimento da água em nosso planeta. É a representação do comportamento da água no globo terrestre, incluindo: ocorrência, transformação, movimentação e relações com a vida humana. É um verdadeiro retrato dos vários caminhos da água em interação com os demais recursos naturais.

Na figura 04, seguinte, apresentamos o ciclo hidrológico de forma simplificada. Nele, distinguem-se os seguintes mecanismos de transferência da água:

a) Precipitação - compreende toda a água que cai da atmosfera na superfície da Terra, nas formas de chuva, neve, granizo e orvalho;

b) Escoamento superficial - quando a precipitação atinge a superfície ela tem dois caminhos por onde seguir: escoar pela superfície ou infiltrar no solo. O escoamento...
superficial é responsável pelo deslocamento da água sobre o solo, formando córregos, lagos e rios e, eventualmente, chegando ao mar;

c) Infiltração - corresponde à porção de água que, ao chegar à superfície, infiltra-se no solo, formando os lençóis d’água;

d) Evaporação - transferência da água superficial do estado líquido para o gasoso; a evaporação depende da temperatura e da umidade relativa do ar;

e) Transpiração - as plantas retiram a água do solo pelas raízes; a água é transferida para as folhas e, então, evapora.

2.3. Ciclo do Uso da Água

Além do ciclo da água no globo terrestre (ciclo hidrológico), existem ciclos internos, em que a água permanece em sua forma líquida, mas tem suas características alteradas em virtude de sua utilização. Nesse ciclo, a qualidade da água é alterada em cada etapa do seu percurso.
CONCURSO PÚBLICO – APOSTILA OPERADOR DE ETA E ETE

3. SISTEMA DE ABASTECIMENTO DE ÁGUA

Constitui-se no conjunto de obras, instalações e serviços, destinado a produzir e a distribuir água a uma comunidade, em quantidade e qualidade compatíveis com as necessidades de população, para fins de consumo doméstico, serviços, consumo industrial, entre outros usos. Tecnicamente, podemos descrever um Sistema como sendo formado pelas etapas de captação, adução de água bruta, tratamento, reservação, distribuição da água tratada, medição/fornecimento ao usuário e que serão conceituadas a seguir:

3.1. Captação

Entende-se por captação, obras de captação, o conjunto de estruturas e dispositivos construídos ou montados junto a um manancial com a finalidade de criar condições para que dali seja retirada água em quantidade capaz de atender ao consumo. Existem duas principais formas: captação de águas subterrâneas e captação de águas superficiais.

3.2. Adução de Água Bruta

É o conjunto de canalizações e equipamentos (ex.: estação de bombeamento) destinados a conduzir água desde o ponto de captação até a unidade de tratamento.

3.3. Tratamento de Água

É o conjunto de processos físicos e químicos destinados a transformar água bruta, in natura, em água potável, adequando-a ao consumo humano e atendendo aos padrões legais de potabilidade. Estes processos são normalmente executados nas Estações de Tratamento de Água, conhecidas como ETA’s.

3.4. Reservação

É o conjunto de obras estruturais formadas na sua maioria por reservatórios, tanques, cisternas, etc., destinados ao armazenamento de água após seu tratamento e antes ou durante a distribuição. Este armazenamento serve para regularizar as variações
de vazão durante a distribuição, regularizar pressões de distribuição e como reserva para combate a incêndios ou outras emergências.

3.5. Distribuição da Água Tratada

Conjunto de tubulações e equipamentos destinados a conduzir a água tratada aos diversos pontos de consumo da comunidade consumidora. É formada, basicamente, por malhas hidráulicas compostas por tubulações de adução, subadução, redes distribuidoras e ramais prediais, que juntos disponibilizam a água tratada na entrada do imóvel do consumidor.

3.6. Medicação e Fornecimento ao Usuário

A medição da água, quando essa chega ao ponto de consumo, passando por um medidor e ficando a partir dali disponível para utilização, leva o nome de micromedição. A micromedição é a forma de medir e permitir a justa cobrança do consumo de cada ramal, atendendo, assim, à legislação que regula a matéria, bem como consagrando a ideia de que o consumidor deve pagar somente o que realmente consumir. O aparelho que mede a água chama-se hidrômetro. Após a água cruzar o hidrômetro ela fica sendo de responsabilidade do consumidor, sendo que as instalações hidráulicas que permitem o fornecimento de água ao mesmo se chamam ramal predial.
4. SISTEMA DE ESGOTAMENTO SANITÁRIO

Constitui-se no conjunto de obras, instalações e serviços, destinados a coletar, tratar e afastar os esgotos (águas usadas) produzidos por uma comunidade, tendo como principal objetivo a disseminação da saúde pública e a conservação do meio ambiente natural. Tecnicamente, podemos descrever um Sistema como sendo formado pelas etapas de coleta, afastamento e transporte, tratamento e disposição final de esgotos sanitários, conceituadas a seguir:

4.1. Coleta

É propiciada pelo conjunto de instalações e tubulações destinado a colher (coletar) a água servida (esgoto doméstico) gerada pelo usuário de água na saída do seu imóvel, junto ao passeio público e sem contato externo com o ambiente (de forma asséptica).

4.2. Afastamento e Transporte

Compreende o conjunto de tubulações e acessórios que recebem as águas servidas das redes coletoras e sem contato externo afastam (de forma asséptica) e conduzem estes efluentes servidos até as estações de tratamento de esgoto.

4.3. Tratamento de Esgoto

É o conjunto de processos físicos, químicos e biológicos destinados a remover das águas servidas os poluentes dos esgotos, que por sua vez, se não removidos, podem causar a deterioração dos cursos de água. Estes processos são normalmente executados nas Estações de Tratamento de Esgoto, conhecidas como ETE’s.

4.4. Disposição Final

Após o tratamento, os esgotos tratados podem ser lançados a um corpo de água receptor ou, eventualmente, aplicados ao solo. Os resíduos sólidos resultantes são levados a aterros sanitários ou, dependendo de sua composição, aplicados ao solo.
Em ambos os casos, há que se levar em conta os poluentes eventualmente ainda presentes nos esgotos tratados, em especial organismos patogênicos e metais pesados.

Figura 5: Esquema simplificado – Sistema de Abastecimento de Água e Sistema de Esgotamento Sanitário
5. O PAPEL DO OPERADOR DE ESTAÇÃO DE ÁGUA E ESGOTO NAS ATIVIDADES DE SANEAMENTO

O cargo de Operador de Estação de Tratamento de Água foi criado pela Lei n° 3.248 de 29 de junho de 1988. Originou-se da aglutinação dos cargos de Tratador de Água, Filtrador e Auxiliar de Análise, existentes até então, e que foram extintos pela lei acima citada. Devido à implantação das estações de tratamento de esgotos e a consequente necessidade de operação das mesmas, este cargo teve sua denominação alterada para Operador de Estação de Tratamento de Água e Esgoto através da Lei n° 6650 de 26 de dezembro de 2006.

O Operador de Estação de Tratamento de Água deve estar ciente de sua grande responsabilidade, pois o produto final do seu trabalho se destina a milhares de pessoas que habitam nossa cidade. O fornecimento de água de qualidade é fundamental para a manutenção da saúde da população.

O Operador de Estação de Tratamento de Esgoto deve estar ciente de sua responsabilidade ambiental, visto que o tratamento adequado dos esgotos terá reflexo imediato na preservação dos recursos hídricos do município.

Síntese dos deveres do cargo: coletar amostras, executar e registrar amostras físico-químicas e bacteriológicas em água e esgoto; operar e controlar as instalações eletromecânicas nas estações de tratamento de água e de esgoto, segundo normas previamente estabelecidas; elaborar planilhas, gráficos e relatórios diversos.

Os itens seguintes desta apostila abordam, direta ou indiretamente, tópicos básicos que dizem respeito às atividades descritas, para que os candidatos às vagas de Operador de Estação de Água e Esgoto possam não só se habilitar para as provas do concurso, como também se prepararem desde já para as atividades que exercerão a partir de sua nomeação.
6. TÓPICOS TÉCNICOS RELATIVOS ÀS ATIVIDADES DO OPERADOR DE ETA E ETE

Este item relaciona-se às atividades do cargo de Operador de ETA e ETE. Os temas abordam as noções sobre hidráulica tais como: conceito, vazão, volume, velocidade de escoamento, tempo, área de escoamento e pressão.

6.1. Noções sobre Hidráulica

6.1.1. Conceito

Hidráulica – a palavra hidráulica provém do grego *hydor* = água e *aulos* = condução, tubo e pode ser entendida como “condução de água”. Sua definição mais usual diz que é o estudo do comportamento da água e de outros líquidos, quer em repouso quer em movimento.

De forma simplificada, a hidráulica pode ser dividida em hidrostática e hidrodinâmica, sendo que hidrostática estuda os líquidos em repouso e hidrodinâmica estuda os líquidos em movimento. A hidrodinâmica é a parte que tem maior envolvimento com as atividades relacionadas ao abastecimento de água, por isto, a ela estão ligados os principais conceitos físicos que tenham relação com os movimentos, tais como: vazão, volume, velocidade, tempo, área de escoamento, pressão, entre outros.

6.1.2. Vazão \((Q)\)

Também chamada de descarga, é o volume de um líquido que, num determinado tempo, atravessa uma determinada secção transversal de um conduto ou curso de água. É normalmente fornecida em:
É representada pela letra Q maiúscula.
A vazão (Q) é encontrada pela equação da continuidade:

\[Q = A \times v, \text{ onde:} \]
\[Q = \text{vazão em m}^3/\text{s} \]
\[A = \text{área da secção transversal de escoamento em m}^2 \]
\[v = \text{velocidade média do escoamento na secção em m/s}. \]

6.1.3. Volume (V)

É a grandeza física que indica a quantidade de matéria (líquido) presente em um corpo (recipient). O volume é geralmente fornecido em metros cúbicos (m³) ou em litros (l), sendo que 1 m³ corresponde a 1000 litros. É representado pela letra V maiúscula.

6.1.4. Velocidade de Escoamento (v)

Em um líquido em movimento, é a relação entre a distância percorrida pela unidade de tempo. É, normalmente, fornecida em m/s (metros por segundo). É representada pela letra v minúscula.

6.1.5. Tempo (t)

Pode ser entendido aqui como o intervalo de tempo em que ocorre a passagem de um líquido por uma secção transversal. É geralmente fornecido em segundos (s) e, para alguns casos, em horas (h), sendo que 1 h corresponde a 3600 s. É representado pela letra t minúscula.
6.1.6. Área de Escoamento (A)

É a área de secção transversal por onde o líquido se movimenta. É fornecida em m² (metros quadrados) e representada pela letra A maiúscula.

6.1.7. Pressão (h)

A pressão de um líquido sobre uma superfície pode ser descrita como “a força que este líquido exerce sobre a unidade de área desta superfície”.

Na hidráulica, é fornecida em:

<table>
<thead>
<tr>
<th>Unidade de Medida</th>
<th>Sigla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pascal</td>
<td>Pa</td>
</tr>
<tr>
<td>Quilograma-força por centímetro quadrado</td>
<td>Kgf/cm²</td>
</tr>
<tr>
<td>Metro de coluna de água</td>
<td>mca</td>
</tr>
</tbody>
</table>

Quadro 2: Unidades de medida de pressão

É representada pela letra h minúscula.

Sendo que:

\[1 \text{Kgf/cm}^2 \equiv 10 \text{mca} \]
\[1 \text{MPa} = 10 \text{Kgf/cm}^2 \]
\[1 \text{Kgf/cm}^2 = 10^5 \text{Pa} \]
7. TRATAMENTO DE ÁGUA

A qualidade da água dos mananciais é resultante de vários fatores, entre eles podemos citar a formação geológica e o uso e ocupação do solo da bacia de captação do recurso hídrico. Em decorrência disto, a água pode conter determinados compostos, elementos químicos e microrganismos prejudiciais à saúde dos consumidores, o que torna necessário o tratamento da água destinada ao consumo humano.

Podemos definir tratamento da água como o conjunto de processos físicos e químicos destinados a transformar água bruta, in natura, em água potável, adequando-a ao consumo humano e atendendo aos padrões legais de potabilidade. Em nossa cidade, o SAMAE utiliza, em suas Estações de Tratamento de Água (ETA's), a tecnologia de tratamento de ciclo completo, que é comumente aplicado ao tratamento de águas de captações superficiais, geralmente turvas e/ou coloridas. Este tipo de tratamento é subdividido nas seguintes etapas: coagulação, floculação, decantação, filtração, desinfecção e fluoretação.

7.1. Conceitos Básicos

a) Água Bruta - é a água in natura retirada de rio, lago, lençol subterrâneo ou outro manancial, possuindo, cada uma, características diversas.

b) Água Tratada - é a água que, após a captação, sofre alterações de suas características, através dos processos de tratamento, vindo a se adequar aos usos a que está prevista.

c) Água Potável - é a água adequada ao consumo humano, e que, portanto, pode ser ingerida com segurança pela população. Para isto, deve apresentar características físicas, químicas, biológicas e organolépticas em conformidade com a legislação específica (Padrões de Potabilidade).

Não se deve confundir água potável com água pura ou mesmo com água limpa. Água pura, isto é, sem nenhuma substância dissolvida, só pode ser “fabricada” através de processos avançados de tratamento. Já na água potável são permitidos, sendo até necessária, a presença de algumas substâncias químicas dissolvidas (sais minerais, por...
exemplo), só que em concentrações limitadas, obedecendo sempre à legislação em vigor. Por sua vez, a água que chamamos de limpa, por sua aparência cristalina, não pode, por si só, ser considerada potável, uma vez que dentro dela podem existir muitos micro-organismos, invisíveis a olho nu, que podem causar doenças.

7.2. Parâmetros de Qualidade da Água

A água é conhecida como solvente universal porque quase todas as substâncias conhecidas podem ser dissolvidas pela água, em maior ou menor grau de dissolução. Sendo assim, a água é capaz de dissolver sólidos, líquidos e gases. Esta capacidade confere aos corpos d’água características físicas, químicas e biológicas decorrentes dos processos que ocorrem no corpo hídrico e também na bacia de captação, devido ao transporte de substâncias pelo escoamento superficial.

A seguir estão listados os principais parâmetros utilizados para caracterização e controle de qualidade das águas bruta e tratada.

7.2.1. Parâmetros Físicos

a) Turbidez: a turbidez da água se deve à existência de partículas em suspensão, de diferentes tamanhos e natureza química. Ex.: argila, compostos de origem orgânica e inorgânica, micro-organismos. A turbidez é medida em equipamentos chamados turbidímetros, e a unidade de medida é o UNT (unidade nefelométrica de turbidez). A turbidez das águas brutas pode variar bastante, desde valores menores que dez, em lagos, até milhares de unidades em rios bastante poluídos ou após intensas chuvas. A água tratada deve apresentar turbidez menor que 0,5 UNT, para que o processo de desinfecção seja eficiente e para atendimento do padrão de potabilidade vigente.

b) Cor: na água bruta, a cor normalmente é causada por compostos orgânicos de origem vegetal, mas também pode ser causada pela presença de compostos de ferro e manganês ou lançamentos de efluentes industriais. Alguns compostos orgânicos podem originar, quando submetidos à cloração, vários compostos potencialmente cancerígenos como os trihalometanos e ácidos haloacéticos. A fim de evitar a formação destes compostos, a água tratada deve apresentar valores de cor inferiores
a 15 unidades. A cor pode ser dividida em cor aparente e cor verdadeira, sendo que esta última é obtida após filtração ou centrifugação da amostra. Nas estações de tratamento normalmente mede-se a cor aparente, em equipamentos chamados colorímetros e a unidade de medida é a unidade Hazen (uH).

c) Sabor e Odor: este parâmetro é de difícil avaliação, visto que a análise de sabor e odor é bastante subjetiva e depende das habilidades e treinamento dos analistas. Na água bruta, a presença de sabor e odor se deve, predominantemente, a compostos orgânicos originados pela atividade metabólica de algumas espécies de algas e cianobactérias. As atuais tecnologias de tratamento não são capazes de remover completamente estas substâncias, sendo necessário, muitas vezes, a utilização de carvão ativado para remoção das mesmas.

d) Temperatura: a temperatura tem influência em todas as etapas do tratamento, e, também, na determinação de alguns parâmetros químicos, tais como pH e solubilidade de gases. Daí a importância do monitoramento da mesma nas águas bruta e tratada.

e) Condutividade Elétrica: a água, em decorrência da presença de substâncias dissolvidas, principalmente sais, tem a capacidade de transmitir corrente elétrica. Este parâmetro, embora não faça parte do padrão de potabilidade, pode ser um indicador de lançamento de efluentes domésticos e industriais no corpo hídrico. A unidade de medida é o µS/cm (microSiemens/centímetro).

7.2.2. Parâmetros Químicos

a) pH: a medida do pH indica a acidez ou basicidade de uma solução. A escala de pH é de 0 a 14. Assim, soluções com pH abaixo de 7 são ditas ácidas e soluções com pH acima de 7 são ditas básicas. Os valores de pH nas águas bruta e tratada sofrem influência da temperatura, da presença de gases e sólidos dissolvidos. Nas águas brutas o pH varia de 6,0 a 8,5. O controle do pH nas águas bruta e tratada é importante, pois o mesmo influencia as etapas de coagulação e desinfecção. O pH geralmente é medido em equipamentos específicos para este fim, através do método potenciométrico.

b) Alcalinidade: a alcalinidade é definida como a capacidade da água em neutralizar ácidos. Pode ser atribuída à presença de carbonatos e bicarbonatos provenientes da ação erosiva da água sobre os solos e rochas. A alcalinidade influí no processo de
coagulação, pois o sulfato de alumínio utilizado como agente coagulante reage com estes compostos originando o hidróxido de alumínio. A alcalinidade é medida através de titulação da amostra com ácido clorídrico padronizado (concentração conhecida).

c) Dureza: a dureza normalmente é devida à presença dos cátions \(\text{Ca}^{+2}, \text{Mg}^{+2} \), provenientes de rochas calcárias, sob a forma de bicarbonatos e carbonatos. Águas com elevada dureza não produzem espuma e incrustam tubulações de água quente e caldeiras. As águas subterrâneas costumam apresentar maior dureza que as águas superficiais. A dureza é determinada através de titulação da amostra com EDTA (ácido etilenodiaminotetraacético).

d) Cloretos: o íon cloreto presente em águas superficiais pouco poluídas e distantes do litoral, normalmente é originário da dissolução de minerais. Concentrações elevadas de cloretos interferem na coagulação e conferem sabor salino à água. No caso da água tratada, altas concentrações de cloretos aceleram os processos de corrosão em tubos metálicos. O padrão de potabilidade estabelece a concentração máxima de 250 mg/l. A determinação dos cloretos se dá por titulação da amostra com nitrato de prata.

e) Ferro e Manganês: o ferro e o manganês são encontrados mais comumente em águas subterrâneas. Contudo, podem ocorrer em águas superficiais (represas), associados a bicarbonatos e matéria orgânica. A presença de ferro e manganês na água tratada pode ocasionar o surgimento de manchas em roupas e louças, aparecimento de precipitados de cor preta e avermelhada nas redes distribuidoras e, em concentrações altas, conferir à água um sabor amargo adstringente. Estes metais normalmente são determinados por colorimetria ou por espectrofotometria de absorção atômica.

f) Alumínio: o alumínio é um dos elementos mais abundantes na natureza; está presente na constituição da crosta terrestre, nos solos, nas plantas e nos tecidos animais. Além disto, compostos de alumínio também são bastante utilizados na indústria e no tratamento da água (sulfato de alumínio). A análise do alumínio na água tratada tem como objetivos o controle da eficiência do tratamento e o monitoramento dos níveis deste metal na água, pois o alumínio, em concentrações acima do limite estabelecido (0,2 mg/l), pode causar danos à saúde (neurotóxico).

g) Fluoretos: águas superficiais dificilmente contêm flúor. Contudo, o mesmo é adicionado à água tratada, em concentrações de 0,6 a 0,9 mg/l, por medida de saúde pública, para auxiliar na prevenção da cárie dentária. Águas subterrâneas podem
apresentar teores variados de flúor, dependendo da formação geológica do solo que as rodeia. A análise de flúor pode ser realizada através dos métodos colorimétrico e potenciométrico.

h) Oxigênio Dissolvido: é o parâmetro de maior relevância para avaliação de um ambiente aquático. O oxigênio presente na água provém, principalmente, da atmosfera e da fotossíntese. Em amostras provenientes de rios e represas, valores baixos de oxigênio dissolvido podem indicar contaminação por material orgânico, visto que, para decomposição da matéria orgânica, as bactérias aeróbias consomem oxigênio. Níveis muito baixos de oxigênio dissolvido, inferiores a 2 mg/l, podem causar a morte de peixes e outros seres aquáticos e o surgimento de odores desagradáveis. O oxigênio dissolvido pode ser determinado pelo método químico ou eletrométrico.

i) Cloro Residual: na maioria das estações de tratamento de água existentes no Brasil, o cloro é adicionado à água filtrada com o objetivo de eliminar micro-organismos patogênicos que possam estar presentes na mesma. Desta forma, este composto deve estar sempre presente em amostras de água tratada provenientes da estação de tratamento ou da rede distribuidora. O cloro normalmente é analisado através de método colorimétrico ou titulométrico.

j) Nitrogênio: o nitrogênio é encontrado nos corpos d’água sob diversas formas – orgânico, molecular, amoniacal, nitrato e nitrito. As formas nitrato e nitrito estão associadas à doença metahemoglobinemia, e por isto, o padrão de potabilidade fixa em 10 mg/l e 1,0 mg/l, respectivamente, suas concentrações máximas. A forma química amônia é tóxica para a maioria das espécies de peixes.

k) Fósforo: ocorre nos corpos d’água nas formas de ortofosfatos, polifosfatos e fósforo orgânico provenientes da dissolução de compostos do solo, degradação da matéria orgânica e despejos domésticos e industriais. Sua importância reside no fato de que a presença deste elemento nos mananciais de abastecimento propicia a ocorrência de extensas florações de algas e cianobactérias.

l) Metais pesados: a presença de metais pesados nas águas naturais (ex.: mercúrio, chumbo, cromo) é resultante do lançamento de despejos industriais. Estes elementos, além de tóxicos, são cumulativos nos organismos, potencializando-se ao longo da cadeia trófica.
7.2.3. Parâmetros Biológicos

a) A água pode ser o veículo de transmissão de muitas doenças, seja através da ingestão da mesma (cólera, febre tifoide, disenterias), ou pelo simples contato (escabiose, tracoma). As principais doenças associadas à água são causadas por bactérias, vírus e protozoários.

b) Bactérias Coliformes: as bactérias do grupo coliforme são indicadoras da possibilidade de contaminação da água por agentes patogênicos. As bactérias Escherichia coli existem em grande quantidade no intestino humano e são eliminadas pelas fezes, de modo que sua ocorrência na água bruta demonstra que a mesma pode ter sido contaminada por fezes de humanos infectados. A detecção de coliformes totais e Escherichia coli, em amostras de água, pode ser realizada através da técnica de substrato enzimático cromogênico, pelo método dos tubos múltiplos ou por contagem em membrana filtrante.

c) Algas e Cianobactérias: estes organismos estão normalmente presentes nos cursos d’água e passam a interferir negativamente no processo de tratamento quando presentes em elevado número no manancial de abastecimento. São capazes de alterar significativamente o pH da água bruta, ocasionar o surgimento de sabor e odor, elevar o consumo de produtos químicos no processo de potabilização da água, reduzir a sedimentabilidade dos flocos e diminuir a carreira de filtragem. Algumas espécies de cianobactérias são capazes de produzir toxinas que, segundo seu modo de ação, classificam-se em hepatotoxinas, neurotoxinas e dermatotoxinas.

d) Protozoários: os protozoários são seres unicelulares que podem ser encontrados em água doce e salgada, no solo e em matéria orgânica em decomposição. Sendo que muitos agem como parasitas, causando doenças em animais e no homem. Atualmente, os protozoários de maior interesse para as águas de abastecimento são agrupados em dois gêneros: Giardia e Cryptosporidium. Estes microrganismos foram identificados como agentes etiológicos de surtos ou epidemias que ocorreram recentemente em vários países, onde a água de abastecimento foi apontada como a fonte de exposição. Os métodos de detecção destes organismos na água bruta e tratada são bastante limitados, em vista disso, a atual legislação de potabilidade recomenda que a turbidez da água filtrada não ultrapasse 0,3 unT.
7.3. Padrões de Potabilidade

A água pode ser qualificada através de diversos parâmetros, que traduzem suas principais características físicas, químicas e biológicas. Esses parâmetros são utilizados na definição de distintos Padrões, que fixam diferentes valores para, por exemplo, águas de abastecimento, águas para balneabilidade, águas residuárias, entre outras. No caso da água para o consumo humano, os parâmetros físicos, químicos e biológicos devem seguir um padrão predeterminado chamado de Padrão de Potabilidade, definido pela Portaria nº 2914/2011 do Ministério da Saúde.

Os padrões de potabilidade evoluem continuamente, sendo que até meados do século XX, a qualidade da água para consumo humano era avaliada basicamente através das suas características organolépticas – limpidez, ausência de odor e sabor agradável. Atualmente há uma crescente preocupação com a presença de novos contaminantes orgânicos, inorgânicos e microbiológicos, e também com os subprodutos do próprio processo de tratamento da água.

7.4. Tecnologia de Tratamento

A potabilização das águas naturais para abastecimento público tem como objetivo transformar a água bruta em potável, conforme o padrão de potabilidade estabelecido pela Portaria nº 2914/2011 MS. O processo de tratamento remove partículas suspensas e coloidais, compostos orgânicos e inorgânicos e microrganismos presentes na água bruta, através de mecanismos predominantemente físico-químicos. A definição da tecnologia de tratamento a ser utilizada depende de vários fatores, entre eles podemos citar as características da água do manancial e custos de implantação, manutenção e operação envolvidos.

a) Coagulação: adição do composto coagulante à água bruta, promovendo, através de intensa agitação, choques entre as partículas coloidais e suspensas com as moléculas do agente coagulante. O objetivo destes choques é a desestabilização elétrica das partículas coloidais através de mecanismos físicos e reações químicas que ocorrem em poucos segundos. Existem vários agentes coagulantes, sendo que os mais usualmente utilizados são o sulfato de alumínio, o cloreto férrico e o cloreto de polialumínio. Dependendo das características da água bruta, pode haver...
necessidade da utilização de produtos denominados auxiliares de coagulação, normalmente polímeros orgânicos sintéticos ou naturais.

b) Floculação: nesta etapa ocorre a aglutinação das partículas desestabilizadas na etapa anterior, resultando na formação de flocos. Para eficiente formação destes, a água é mantida em agitação. No início, mais intensa, para propiciar condições favoráveis à ocorrência do maior número de choques possíveis. À medida que os flocos vão se formando, a intensidade da agitação é reduzida, a fim de evitar a quebra dos mesmos.

c) Decantação: é o fenômeno pelo qual os flocos formados na etapa anterior, que já agregaram a si as impurezas, começam o processo de sedimentação e consequente clarificação da água. Esse fenômeno ocorre devido à baixa velocidade da água na grande área do decantador e porque os flocos, que são mais densos do que a água, afundam pela ação gravitacional, ficando depositados no fundo do tanque. A água superficial torna-se mais clara, ao longo do fluxo, e apta a seguir escoando para a próxima etapa.

d) Filtração: a maioria das partículas ficou retida no decantador, porém uma parte persiste em suspensão; e é para remover essa parte que se procede à filtração. Hidraulicamente, faz-se a água transpassar uma camada filtrante, constituída normalmente por um leito arenoso, com granulometria predimensionada, sustentada por uma camada de seixos, de modo que as impurezas, as partículas, microrganismos, entre outros, fiquem retidos e a água filtrada seja límpida.

e) Desinfecção: eliminação dos microrganismos patogênicos que porventura tenham conseguido atravessar as fases anteriores do tratamento. Os desinfetantes mais utilizados em estações de tratamento de água são os compostos de cloro – cloro gás e hipoclorito de sódio.

f) Fluoretação: adição de compostos de flúor à água em tratamento, como medida de saúde pública, visando a diminuição da incidência de cárie dentária. Dentre os produtos químicos utilizados para este fim, destacam-se o fluossilicato de sódio e o ácido fluossilícico.
7.4.1. **Controle do Processo de Tratamento**

Para que os processos de cada etapa do tratamento da água ocorram de forma adequada se faz necessário o acompanhamento por meio dos controles analítico e operacional.

7.4.1.1. Controle Analítico

A realização de análises físico-químicas, durante as várias etapas do tratamento, possibilita o acompanhamento da eficiência do mesmo e determina a necessidade, ou
não, da implementação de medidas preventivas e/ou corretivas. Além disto, serve para monitorar os principais parâmetros relativos à potabilidade da água. Para cada etapa, distintas análises são feitas, a saber:

a) Água Bruta: normalmente, são realizadas as seguintes análises: temperatura, cor, turbidez, pH, alcalinidade total, dureza total, cloretos, matéria orgânica, oxigênio dissolvido, dióxido de carbono, ferro, manganês. Esta bateria de análises é realizada a cada turno de trabalho e tem como objetivo monitorar a qualidade da água bruta que chega à ETA e detectar alterações na mesma.

b) Água Coagulada: analisa-se pH.

c) Água Decantada: cor, turbidez, pH.

d) Água Filtrada: turbidez, cor, alumínio residual.

e) Água Tratada: na água tratada são analisados os mesmos parâmetros avaliados na água bruta. Além disto, a cada duas horas, são efetuadas análises de pH, turbidez, cor, flúor, cloro residual livre e alumínio residual. Diariamente, análise bacteriológica.

7.4.1.2. Controle Operacional

O controle operacional compreende todas as ações necessárias ao bom andamento do processo de tratamento da água. A seguir estão elencadas as principais atividades relativas à operação de estações de tratamento de água:

a) medição da vazão de água bruta;

b) realização de teste de jarros para determinação da dosagem adequada de coagulante;

c) ajustes e conferências nas dosagens dos produtos químicos utilizados no tratamento;

d) preparo de soluções dos produtos químicos utilizados no tratamento;

e) lavagem de filtros;

f) medição dos níveis dos reservatórios de água tratada;

g) registro de consumo de produtos químicos, e

h) verificação periódica do funcionamento de bombas, válvulas, dosadores e demais equipamentos existentes nas estações de tratamento de água.
8. TRATAMENTO DE ESGOTO

8.1. Esgotos Domésticos

A água é o mais importante recurso natural, no entanto, ela não está abundantemente disponível, apenas 0,03% da água do planeta está prontamente disponível para o abastecimento público. O meio ambiente apresenta capacidade limitada de absorver resíduos, o que gera poluição, por isso, no futuro os recursos naturais podem não ser suficientes para atender a demanda da sociedade.

A utilização de água para abastecimento público e o consequente retorno das águas servidas ao corpo hídrico é uma importante fonte de poluição. Os esgotos domésticos apresentam contaminação fecal e elevada concentração de detergentes, óleos e graxas.

As substâncias presentes no esgoto doméstico são classificadas como inorgânica (areia, cascalho e lixo provenientes da drenagem pluvial) e orgânica. Cerca de 70% do esgoto é constituído de matéria orgânica, e os grupos encontrados são:

a) Proteínas (40 a 60%);

b) Carboidratos (30 a 50%);

c) Gorduras e óleos (10%);

d) Além de agentes patológicos, os principais poluentes encontrados em esgotos domésticos são:

e) Carga orgânica, que consome oxigênio no seu processo natural de degradação;

f) Fósforo (P), principalmente, ortofosfatos presentes nos detergentes;

g) Nitrogênio (N), nas formas de nitrogênio amoniacal, nitrito e nitrato.

O Nitrogênio e o Fósforo são nutrientes que favorecem o desenvolvimento excessivo de algas. A floração de algas apresenta diversos inconvenientes: podem produzir toxinas, e em águas profundas reduzem a luminosidade (o que prejudica as espécies bênticas) e, em consequência de sedimentação de biomassa morta, a degradação consome quantidades significativas do oxigênio.
Quando a estabilização da matéria orgânica provoca a extinção de oxigênio dissolvido (OD) do meio, tem-se a condição anaeróbia, comprometendo a vida aquática. Para OD < 5 mg/L algumas espécies de peixes começam a morrer, para OD < 3 mg/L a mortandade de peixes é generalizada.

8.2. Objetivos do Tratamento de Esgoto

A finalidade da Estação de Tratamento de Esgoto (ETE) é remover agentes nocivos e patológicos, protegendo a saúde humana e garantindo o suprimento de água para gerações futuras.

8.3. Sistemas de Esgotamento Sanitário

À medida que as comunidades e a concentração da população tornam-se maiores, as soluções individuais para o destino do esgoto doméstico devem dar lugar às soluções de caráter coletivo denominadas de “sistemas de esgotamento”.

A solução adotada para alguns sistemas de esgotamento em Caxias do Sul prevê a implantação de redes coletoras que receberão concomitantemente e em um primeiro momento (nesta primeira etapa do empreendimento) as águas servidas (esgotos domésticos) e as águas pluviais, estas últimas até um determinado limite representado pelo “first flush” ou primeiro fluxo, que é o volume produzido pelos primeiros minutos de chuva, em mistura com o próprio efluente doméstico, através de estruturas denominadas Caixas Limitadoras de Vazão – CLV’s.

Junto com as CLV’s o sistema de esgotamento sanitário é composto ainda por outras estruturas e órgão acessórios, descritos a seguir:

a) Ramal Predial: Os ramais prediais são os ramais domiciliares, que transportam os esgotos para a rede pública de coleta.

b) Coletor: Os coletores recebem os esgotos das residências e demais edificações, transportando-os aos coletores-tronco. Por transportarem uma menor vazão, possuem diâmetros proporcionalmente menores que os das demais tubulações.
c) Coletor-tronco: Os coletores-tronco recebem as contribuições dos coletores, transportando-as aos interceptores. Os diâmetros são usualmente mais elevados que os dos coletores.

d) Interceptor: Os interceptores correm nos fundos de vale, margeando cursos d’água ou canais. Os interceptores são responsáveis pelo transporte dos esgotos gerados na sua sub-bacia, evitando que os mesmos sejam lançados nos corpos d’água. Em função das maiores vazões transportadas, os diâmetros são usualmente maiores que os dos coletores-tronco.

e) Emissário: Os emissários são similares aos interceptores, com a diferença de que não recebem contribuições ao longo do percurso. A sua função é transportar os esgotos até a estação de tratamento de esgotos.

f) Poços de Visita: Os poços de visita (Pv’s) são estruturas complementares do sistema de esgotamento. A sua finalidade é permitir a inspeção e limpeza da rede. Podem ser adotados nos trechos iniciais da rede, nas mudanças (direção, declividade, diâmetro ou material), nas junções e em trechos longos.

g) Estação Elevatória de Esgoto (EEE): Quando as profundidades das tubulações se tornam demasiado elevadas, quer devido à baixa declividade do terreno, quer devido à necessidade de se transpor uma elevação, torna-se necessário bombar os esgotos para um nível mais elevado. A partir desse ponto, os esgotos podem voltar a fluir por gravidade. As unidades que fazem o bombeamento são denominadas elevatórias, e as tubulações que transportam o esgoto bombeado são denominadas linhas de recalque.

h) Estação de Tratamento de Esgotos (ETE): A finalidade das estações de tratamento de esgotos é a de remover os poluentes dos esgotos, os quais viriam a causar uma deterioração da qualidade dos corpos d’água. A etapa de tratamento de esgotos tem sido negligenciada em nosso meio, mas deve-se reforçar que o sistema de esgotamento sanitário só pode ser considerado completo se incluir a etapa de tratamento.

i) Disposição Final: Após o tratamento, os esgotos podem ser lançados ao corpo d’água receptor ou, eventualmente, aplicados no solo. Em ambos os casos, há que se levar em conta os poluentes eventualmente ainda presentes nos esgotos tratados, especialmente os organismos patogênicos e metais pesados. As tubulações que transportam estes esgotos são também denominadas de emissários.
8.4. Concepção do Sistema

O Plano Diretor de Esgotamento Sanitário (PDES) desenvolvido em 2001 pelo Instituto de Pesquisas Hidráulicas da Universidade Federal do Rio Grande do Sul, apontou preliminarmente as alternativas de solução para o sistema de esgoto sanitário de Caxias do Sul, tanto do ponto de vista da rede coletora quanto dos processos de tratamento compatíveis com os esgotos gerados na sede urbana do Município.

O sistema de tratamento recomendado no PDES era constituído pelos seguintes processos:

a) Tratamento preliminar com gradeamento e desarenador;

b) Tratamento primário com reator anaeróbio de manta de lodo (UASB);

c) Tratamento secundário com filtro biológico;

d) Secagem do lodo através de leitos de secagem.

Os projetos implementados a partir daí contemplaram todas essas etapas e incluíram algumas melhorias, sendo a desinfecção e a remoção de nutrientes por tratamento físico-químico as mais significativas.

Cada Estação de Tratamento de Esgoto tem peculiaridades em seu projeto, apesar de seguirem todas a mesma linha geral na concepção do tratamento do esgoto. Utilizaremos o exemplo da ETE Tega, a maior ETE do Município de Caxias do Sul, para descrever os passos do processo de tratamento de esgoto.
Figura 7: ETE TEGA – Planta geral do parque da ETE TEGA.
8.5. Etapas de Tratamento

8.5.1. Fluxograma do Sistema de Tratamento

Figura 8: ETE TEGA – Fluxograma do Sistema de Tratamento
8.5.2. Tratamento Preliminar (remoção de sólidos grosseiros e areia)

8.5.2.1. Comporta de entrada/canal de by-pass

A comporta de entrada é utilizada para liberar ou impedir a entrada de esgoto afluente à ETE, desviando para o canal de by-pass, eventualmente, quando a vazão for maior do que a admitida para a operação da Estação, quando se percebe que o afluente possui características prejudiciais ao tratamento, ou ainda, no caso da necessidade de manutenção e limpeza em equipamentos.

8.5.2.2. Gradeamento grosso (manual) e Gradeamento fino (mecanizado)

Composto por grade de barras em aço inox, seguido de grade mecanizada com sistema autolimpante, tem a função de reter sólidos presentes no esgoto afluente com dimensões maiores de 10mm, recolhendo os mesmos em uma calha com rosca transportadora, que encaminha os resíduos para um contêiner, para posterior envio a aterro sanitário.

8.5.2.3. Desarenadores mecanizados

O sistema de remoção de areia é constituído por caixas de areia com diâmetro de 6,0m, com um sistema mecanizado de raspagem do fundo que encaminha a areia para um poço de acúmulo, de onde é feita a retirada do material sedimentado através de rosca transportadora, para um contêiner de resíduos a ser encaminhado a aterro sanitário.

8.5.2.4. Calha Parshall

Após a saída dos dois tanques desarenadores, o esgoto já destituído de sólidos minerais é encaminhado para um canal de reunião do fluxo, onde está instalada a calha Parshall, com vistas à medição da vazão afluente. Após a calha tem-se uma série de comportas e válvulas, as quais permitem efetuar manobras de desvio de
esgoto para as 4 linhas de tratamento (Linhas A-B-C-D), conforme for conveniente para a operação do sistema.

8.5.3. Tratamento Secundário (remoção de matéria orgânica – DBO e sólidos suspensos)

8.5.3.1. Reator Anaeróbio de Fluxo Ascendente com Manta de Lodo (UASB)

O esgoto já destituído dos sólidos grosseiros e dos sólidos minerais removidos na caixa de areia será conduzido por tubulação e descarregado nas nove coroas de alimentação de cada reator, na parte superior de cada unidade. Cada coroa de alimentação é dividida em 30 partes, de onde partem as tubulações de distribuição do esgoto fixadas por todo o fundo do reator, que têm por finalidade promover uma distribuição de esgoto o mais uniformemente possível no fundo do reator.

Denominado originalmente na Holanda de UASB (*Upflow Anaerobic Sludge Blanket Reactor*) – Reator Anaeróbio de Fluxo Ascendente e Manta de Lodo, no Brasil são também denominados de DAFA (Digestor Anaeróbio de Fluxo Ascendente), RAFA (Reator Anaeróbio de Fluxo Ascendente), RALF (Reator Anaeróbio de Leito Fluidificado), etc.

A principal função dos reatores UASB é fornecer as condições ideais para promover a remoção de matéria orgânica presente no esgoto afluente, por meio de micro-organismos anaeróbios. O processo de tratamento se dá devido à formação de uma colônia específica de bactérias e outros micro-organismos dentro do reator, cujo metabolismo se dá em meio anaeróbio, ou seja, sem a presença de oxigênio dissolvido na massa líquida.

O lodo de esgoto é retido nessa unidade de tratamento por separação de fases gasosa, líquida e sólida. As bactérias em flocos ou grânulos formam uma manta de lodo no interior do reator. Dispositivos projetados e instalados para separar gases, sólidos e líquidos garantem a permanência do lodo no sistema e a retirada do biogás e a coleta do efluente tratado.
A coleta do efluente se dá na parte superior do reator, por meio de canaletas com vertedores em fibra de vidro, e encaminhado para a unidade de tratamento seguinte. O gás produzido no processo anaeróbio é separado da fração líquida por meio dos separadores trifásicos, e encaminhado por tubulação até o filtro de carvão ativado e em seguida é queimado no *flare*. O lodo excedente descartado do sistema, com idade (tempo de residência celular) superior a 30 dias já se encontra estabilizado. A remoção do lodo estabilizado se dá pelo fundo do reator e encaminhado para o tanque de acúmulo e recalque de lodo por sistema de válvulas, registros e tubulações.

8.5.4. Tratamento Terciário (remoção de nutrientes – nitrogênio amoniacal e fósforo)

8.5.4.1. Filtro Biológico Aerado Submerso (FBAS)

Após passar por tratamento anaeróbio nos UASB, o líquido efluente segue para o tratamento nos filtros aerados, compostos por uma camada filtrante com pedra britada Nº 4, e fornecimento de ar através de sopradores e sistema de distribuição de ar por tubulações e difusores instalados no fundo de cada filtro. A entrada do afluente no filtro se dá pelo fundo da estrutura, onde se distribui pelo fundo falso da mesma, e então segue com fluxo ascendente, permeando pelo meio filtrante, até ser coletado por canaletas situadas na parte superior do filtro. O filtro biológico aerado submerso desempenha duas funções: a remoção de um percentual de matéria orgânica restante do processo anaeróbio e, principalmente, a transformação do nitrogênio amoniacal presente no líquido em outros compostos nitrogenados. O processo de tratamento se dá em ambiente com abundância de oxigênio dissolvido, fornecido mecanicamente pelo sistema de aeração submersa, o qual favorece o crescimento de micro-organismos de características metabólicas aeróbias, ou seja, com a presença de oxigênio dissolvido no meio líquido, que, além de utilizar a matéria orgânica presente no líquido percolado, utiliza o nitrogênio amoniacal também no mecanismo metabólico, transformando em outros compostos nitrogenados menos danosos ao meio ambiente natural (corpo receptor).

A limpeza do filtro se dá por dreno de fundo, que quando acionado, encaminha o lodo para a estação elevatória de recícolo, retornando ao sistema.
8.5.4.2. Câmara de Mistura Rápida/Floculador/Decantador Secundário

Após passar pelo FBAS, o efluente é encaminhado para a câmara de mistura rápida, onde é adicionada a solução de coagulante ao líquido. O coagulante a ser utilizado é o Cloreto Férrico, cuja mistura na massa líquida é feita mecanicamente por um misturador rápido instalado nesta câmara. A função do coagulante é desestabilizar as partículas coloidais presentes no esgoto, a fim de promover a formação de flocos na estrutura seguinte. A seguir o efluente passa para o sistema de floculação do tipo Alabama, onde o líquido passa por uma série de câmaras, construídas de forma a propiciar uma agitação ideal para que as partículas coloidais desestabilizadas se unam e formem flocos com peso específico maior que a água, que serão removidos na etapa seguinte, nos decantadores retangulares.

Os flocos formados na etapa anterior sedimentam e ficam depositados no fundo dos decantadores retangulares. Para evitar o acúmulo e promover a remoção do material decantado, entraram em funcionamento as pontes raspadoras, que arrastam o lodo de fundo dos decantadores para um canal localizado na extremidade oposta à entrada do líquido, de onde uma bomba de sucção negativa retira o lodo e encaminha para a elevatória de reciclo. O líquido clarificado é coletado na parte superior do tanque, na extremidade oposta à entrada, e encaminhado para a próxima etapa denominada desinfecção.

8.5.5. Desinfecção (eliminação de agentes patogênicos – Coliformes termotolerantes)

8.5.5.1. Câmara de Contato

Consiste em um tanque de passagem do efluente tratado onde é dosada uma solução de dióxido de cloro, que é um agente com alto potencial oxidante, cuja função é a eliminação de agentes patogênicos presentes no efluente tratado, medidos por meio de análises laboratoriais de coliformes termotolerantes. Esta câmara de contato é formada por chicanas que permitem que o efluente fique em contato com o dióxido de cloro por cerca de 30 minutos, antes de seguir para o corpo receptor, garantindo assim o tempo necessário para a eliminação de agentes patogênicos do esgoto. Após
a passagem pela câmara de contato, o esgoto tratado é encaminhado para o canal de emissário, e lançado no corpo hídrico receptor do sistema.

8.5.6. Estruturas Anexas e acessórias

8.5.6.1. Filtro de carvão ativado com queimador de gases (flare)

O processo anaeróbio apresenta como subproduto do metabolismo bacteriológico a formação de biogás, composto por vários tipos de gases, entre eles o gás sulfídrico H$_2$S e o gás metano CH$_4$. O gás formado dentro dos reatores anaeróbios é coletado por meio de separadores trifásicos formados por campânulas de fibra de vidro ou lona, e encaminhado por meio de tubulação de PVC até o filtro de carvão ativado, formado por várias camadas de meio filtrante com granulometrias diferentes, sendo a última camada formada por carvão ativado em pó, onde o biogás é filtrado e queimado no *flare*, instalado acima do filtro. O *flare* é equipado com sistema de ignição automático, para garantir que a queima do gás não seja interrompida.

8.5.6.2. Elevatória de reciclo

O lodo proveniente do sistema de limpeza dos floculadores, decantadores retangulares e dos filtros aerados submersos, bem como o líquido purgado da centrifuga são encaminhados por meio de um conjunto de válvulas, registros e tubulações até as estações elevatórias de reciclo, onde bombas submersíveis instaladas dentro do poço de acúmulo recalcam o líquido afluente para dentro dos reatores anaeróbios, sofrendo novo processo de tratamento.

8.5.6.3. Tanque de acúmulo e recalque de lodo

O lodo em excesso gerado dentro dos reatores anaeróbios é removido apenas em um único nível, junto ao fundo dos mesmos. Do poço de acúmulo, o lodo é bombeado por meio de dois conjuntos de bombas helicoidais para os decanters centrifugos localizados na casa da centrifuga, onde será feito o deságue do lodo.
8.5.6.4. Casa da centrífuga

Local onde estão instalados dois conjuntos de decanters centrífugos, um conjunto de preparo e dosagem de polieletrólito e o painel geral de controle do sistema de deságue do lodo gerado na ETE, de onde é possível efetuar todos os comandos referentes à operação de descarte e deságue de lodo, como acionamento da válvula de controle, bombas helicoidais, sistema de dosagem de polieletrólito, acionamento dos decanters centrífugos e sistema de limpeza dos mesmos. As bombas helicoidais recalcam o lodo para os decanters centrífugos, onde na entrada é adicionada a solução de polieletrólito que auxilia na separação da água/sólido. O lodo desaguado é descartado em contêineres localizados abaixo das centrífugas, e o líquido clarificado e de limpeza do sistema é encaminhado para as estações elevatórias de reciclo, onde retornam para o sistema de tratamento.

8.5.6.5. Casa de química

A armazenagem das soluções químicas, o sistema de geração de dióxido de cloro, e os sistemas de dosagem dos produtos químicos utilizados no processo de tratamento estão localizados na casa de química.

8.5.6.6. Administração, laboratório, vestiário e guarita

Como unidade de apoio à operação a ETE possui estrutura para comportar a parte administrativa operacional da ETE composta por salas, sanitários e cozinha. A administração possui também dois laboratórios de análises químicas e biológicas, com sala para separação de amostras e almoxarifado, e sala para comportar uma balança analítica.
9. LABORATÓRIO BÁSICO – TRATAMENTO DE ÁGUA E ESGOTO

9.1. Vidraria Laboratorial Básica

a) Proveta: são recipientes em forma cilíndrica que servem para a medição de líquidos através da utilização de uma escala de volume. São menos precisas que as pipetas graduadas; as mais comumente usadas são as de 10, 50, 100, 250, 500 e 1000 ml.

b) Balão Volumétrico: são frascos volumétricos construídos para conter volume exato de um líquido; são recipientes com forma de pera, fundo chato e gargalo comprido providos com tampa esmerilhada. O volume final é marcado com uma fina linha traçada em torno do gargalo a uma altura apropriada; os mais comumente usados são os de 50, 100, 250, 500, 1000 e 2000 ml.

c) Erlelnmeyer: São frascos cônicos que facilitam a agitação durante o processo de titulação; são também usados para armazenar líquidos quando em aquecimento; podem ser graduados ou não, porém, não são instrumentos de medida; os mais utilizados são de 100, 250, 500 ml.

d) Frascos Reagentes: são recipientes usados, normalmente, para armazenar soluções reagentes de concentração conhecida; são fabricados em vidro incolor ou âmbar, providos de tampa em vidro, com rolha esmerilhada, ou plástica; devem apresentar resistência térmica e inércia química; os mais usados são os de 125, 250, 500, 1000 e 2000 ml.

e) Bureta: a bureta consiste de um tubo cilíndrico uniformemente calibrado em toda a extensão da escala graduada, provido na extremidade inferior de um dispositivo apropriado para controlar a vazão do líquido; comumente é utilizado com torneira.

f) Copos (Bequer): são copos utilizados como auxiliares em operações para conter líquidos no laboratório. Devem apresentar resistência térmica e podem ser graduados, porém não são aparelhos de medida. Existem dois tipos de copos, os de forma alta e os de forma baixa. Os mais comuns são os de 50, 100, 250, 500, 1000 e 2000 ml.
g) Pipetas: servem para transferir volumes líquidos definidos. Existem duas diferentes categorias: **Pipetas Graduadas**: servem para transferir volumes variáveis, possuindo escalas adequadas de acordo com o seu volume. As mais utilizadas são as de 1, 2, 5, 10 e 20 ml com divisões de 0,1 ml. **Pipetas Volumétricas**: são tubos de vidro, expandidos cilindricamente na parte central, feitas para liberar um volume exatamente definido, tem a marca de graduação na parte superior acima do bulbo. As mais utilizadas são as de 1, 2, 5, 10, 20, 50 e 100 ml.

h) Funil Comum: são fabricados em vidro ou material plástico, com haste curta e usados para encher frascos, buretas e para filtrações comuns; sem precisão analítica.

i) Funil Analítico: são fabricados em vidro e têm haste longa, própria para colunas de água que facilitam a filtração; podem ter ranhuras internas para proporcionar uma filtração mais rápida.

j) Tubos de Ensaio: são tubos de vidro, resistentes ao calor e quimicamente estáveis, usados principalmente em bacteriologia, na cultura de micro-organismos em meios líquidos. Com esta finalidade devem ser sem bordas; são usados também em ensaios químicos. As dimensões mais comuns são 18 X 180 mm e 13 X 100 mm.

k) Barrilete para Água Deionizada/Destilada: serve para armazenar água deionizada ou destilada em laboratório; pode ser fabricado em vidro ou plástico; a torneira para retirada da água pode ser também de vidro ou plástico; deve ser provido de tampa; os mais usados têm capacidade para 10, 20 ou 50 litros.

l) Frasco Lavador: são frascos providos de um dispositivo para emitir um jato fino (diâmetro apropriado do orifício é de 1 mm) da água deionizada ou outro líquido que se use para transferir ou lavar precipitados; podem ser de plástico (1) ou de vidro (2); os frascos lavadores de plástico só devem ser utilizados para líquidos frios.

m) Frasco DBO: são frascos de vidro com volume definido e tampa de vidro biselada esmerilhada, têm selo hidráulico no gargalo, servem para testes de demanda bioquímica de oxigênio.

n) Vidro de Relógio: são recipientes que servem como suporte de pesagem de pequenas quantidades e, também, como tampa em frascos que contenham amostras que devem ser preservadas do contato com o ambiente durante um curto
espaço de tempo, como na formação de precipitados, no envelhecimento de soluções, etc.
o) Bastão de Vidro: são usados para agitar soluções e auxiliar na transferência de precipitados e líquidos de um recipiente para outro; quando adaptados com uma borracha em uma das extremidades, servem para a limpeza de recipientes e transferência quantitativa de sólidos e líquidos.
Figura 9: Vidraria Laboratorial Básica

- Proveta
- Balão Volumétrico
- Erlenmeyer
- Frascos Reagentes
- Bureta
- Copos (Bequer)
- Pipetas Graduadas
- Pipetas Volumétricas
- Funil Comum
- Funil Analítico
- Tubos de Ensaio
- Barrilete p/Água Deion./Dest.
- Frasco Lavador
- Frasco DBO
- Vidro de Relógio
- Bastão de Vidro
9.1.1. Acessórios

a) Suporte: são constituídos de uma base geralmente retangular, e uma haste fixa nesta base; podem ser fabricados em ferro ou aço inoxidável e servem para sustentar buretas, funis de separação, etc., quando usados em conjunto com agarradores e/ou anéis de sustentação.

b) Densímetro: são usados para determinar a densidade de soluções; são fabricados em vidro e possuem escala adequada à solução cuja densidade devem medir.

c) Anel de Sustentação: servem para sustentar funis de separação, funis comuns e analíticos; o diâmetro deve ser adequado ao tamanho do material a sustentar; devem ser fixados a um suporte com haste ou similar.

d) Bico de Bunsen: são utilizados para aquecimentos de soluções em laboratório onde se deseja atingir temperaturas moderadamente elevadas; a temperatura máxima pode ser atingida através do ajuste de entrada de ar, de modo a se admitir mais ar do que o necessário para a produção de uma chama luminosa.

e) Agarrador: são dispositivos que servem para fixar buretas e outros materiais; usados com o auxílio de adaptadores que os prendem a um suporte; podem ser do tipo simples (1), com parafuso de ajuste e mola para segurar qualquer objeto, ou duplo (2) com adaptador próprio para suporte.

f) Pera de Sucção – Pipetador: são constituídas de uma única peça moldada em borracha sintética, permanentemente fechada por três válvulas que, acionadas, dão controle de pressão; são acopladas na extremidade superior da pipeta com a finalidade de pipetar líquidos diversos.

g) Termômetro: são fabricados em vidro, podendo ter álcool colorido ou mercúrio como substância expansível indicadora de temperatura; são largamente usados em laboratório naquelas análises que exigem a determinação de temperatura da amostra bem como a do ambiente; a escala do termômetro é escolhida em função da necessidade do serviço.

h) Espátula: servem para transferir materiais sólidos de um frasco a outro principalmente durante a pesagem dos mesmos, bem como em outros procedimentos de laboratório; em função do material a ser manipulado; podem ser de madeira, plástico ou aço inoxidável.
i) Tenaz: servem para manusear materiais aquecidos bem como aqueles levados a peso constante durante um procedimento analítico; são fabricadas em metal sendo que o formato e o tamanho devem ser adequados ao material a ser manipulado.

9.2. Equipamentos Laboratoriais Básicos

a) Agitador Magnético: equipamento utilizado para agitar soluções através de uma pequena barra magnética, movida por um campo magnético rotativo. Utilizado no preparo de soluções ou para agitação de amostras durante análises laboratoriais.

b) Autoclave: equipamento utilizado para esterilização de vidraria, meios de cultura e cartelas utilizadas em análises bacteriológicas.
c) Balança Analítica Eletrônica: equipamento utilizado para pesagem, com precisão, de reagentes sólidos e líquidos, para preparação de soluções-padrão e reagentes químicos.

d) Capela de exaustão de gases: equipamento utilizado para eliminar vapores e gases tóxicos oriundos da fervura de amostras e da preparação de reagentes.

e) Deionizador: equipamento utilizado para purificação da água a ser utilizada no preparo de reagentes laboratoriais e lavagem de vidrarias.

f) Destilador: equipamento utilizado para obter água pura, por evaporação e posterior condensação, para o preparo de reagentes, lavagem de vidrarias e diluição de amostras.

g) Dessecador: recipiente fechado, de vidro, que contém um agente dessecante, normalmente sílica-gel. É utilizado para guardar substâncias em baixo teor de umidade.

h) Estufa para cultura bacteriológica: equipamento utilizado para manter à temperatura de 35°C, cartelas ou tubos de ensaio com amostras a serem analisadas, durante o período de tempo necessário para realização da análise bacteriológica.

i) Estufa para esterilização e secagem: equipamento utilizado para secar e esterilizar vidrarias.

j) Colorímetro: o princípio de funcionamento deste equipamento é baseado na produção de reações químicas com a substância cuja concentração queremos determinar, ocasionando o surgimento de cor na amostra, sendo que a intensidade da cor desenvolvida é proporcional à concentração do elemento analisado. Sendo, portanto, um processo analítico ótico, que utiliza filtros de comprimentos de onda na faixa visível do espectro eletromagnético, de acordo com o parâmetro que se deseja analisar.

k) Turbidímetro: equipamento utilizado para medir a turbidez de amostras de água. A unidade de medida é a Unidade Nefelométrica de Turbidez (UNT).

l) Medidor de pH: equipamento utilizado para medir o pH, através do método potenciométrico.
Figura 11: Equipamentos laboratoriais básicos
9.3. Técnicas Laboratoriais

9.3.1. Medidas de Volume

Os aparelhos mais usados em laboratório para medida de volumes são as provetas, os balões volumétricos, as pipetas e as buretas. As provetas e pipetas graduadas são usadas para medidas aproximadas, enquanto que os balões e pipetas volumétricas para medidas precisas. As buretas para liberar volumes líquidos com exatidão.

Quanto à técnica de medida, devemos considerar que a superfície de um líquido confinado em um tubo não é plana, pois em virtude da tensão superficial ela exibe uma curvatura denominada de menisco. Normalmente, utiliza-se o ponto mais baixo do menisco na calibração e uso dos aparelhos de medida. Para evitar erros nas medições de volume, o nível de visão deve coincidir com a marca que determina o volume a ser medido.

![Figura 12: Medidor de Volume](image)

9.3.2. Pipetar

A transferência de volumes líquidos definidos é realizada com a utilização de pipetas graduadas ou volumétricas. A pipetagem é sempre realizada com o uso de uma fonte de vácuo, tais como a pera de sucção e pipetadores automáticos, jamais usar a boca para pipetar. Após acoplar a fonte de vácuo na extremidade superior da pipeta, mergulha-se a ponta da mesma no líquido, aspirando-o até o volume desejado.
Mantendo a pipeta na posição vertical, conferir o volume aspirado, encostar a ponta da pipeta na parede do recipiente que receberá o líquido, permitindo o escoamento do mesmo. Lavar a pipeta e deixar o líquido de lavagem escorrer, colocando-a em um suporte adequado.

Figura 13: Pipetas

9.3.3. **Titular**

O processo de titulação é usado em técnicas analíticas laboratoriais e consta, basicamente, da adição de uma solução padrão, gota a gota, a uma amostra sob agitação constante. Esta técnica é realizada com o auxílio de uma bureta e o ponto final da reação é dado através da visualização da mudança de coloração da amostra ou através de um medidor de pH. Na titulação, a solução contendo o constituinte a determinar é transferida para um frasco Erlenmeyer ou similar. Sempre que se vai realizar uma titulação é necessária fazer a preparação da bureta, que devidamente limpa, é fixada em posição vertical a um suporte adequado. Iniciar lavando a bureta com pequenas porções da solução padrão a ser usada, adicionadas através de um funil (ou recipientes apropriados). Fazer esta operação duas ou três vezes, onde cada porção é escoada completamente antes da adição da seguinte. A seguir, deixar a torneira da bureta fechada e, cuidadosamente, proceder ao enchimento da mesma (com o auxílio de um funil ou copo) até acima da marca zero. Acertar o volume da
bureta na marca zero, abrindo a torneira e deixando a solução escoar até que o menisco atinja a marca desejada. A bureta deve ficar completamente cheia, da marca zero até a ponta. Para proceder à titulação propriamente dita, segurar o frasco que contém a amostra a ser titulada com a mão direita e posicioná-lo abaixo da ponta da bureta. A torneira será controlada com a mão esquerda, de tal forma que a solução padrão goteje vagarosamente. O frasco que contém a amostra deve ser continuamente agitado. No momento em que ocorrer a indicação do ponto final (mudança de coloração ou pH desejado), fechar a torneira rapidamente e anotar o volume gasto da solução padrão.

9.4. Regras Gerais de Segurança no Laboratório

a) Usar sempre os Equipamentos de Proteção Individual (EPI’s) – luvas, óculos de segurança, máscaras e guardapo;
b) Manter as bancadas limpas e organizadas;
c) Identificar claramente todos os frascos contendo reagentes químicos;
d) Ler atentamente as Fichas de Segurança dos Produtos Químicos (FISPQ);
e) Nunca utilizar equipamentos antes de ler as instruções relativas ao modo de operação dos mesmos;
f) Nunca ligar equipamentos elétricos antes de verificar a voltagem correta;
g) Não utilizar vidraria que não esteja em perfeitas condições. Material de vidro quebrado ou danificado deve ser depositado em local apropriado;
h) Os ensaios laboratoriais que necessitam de aquecimento da amostra devem ser realizados na capela de exaustão;
i) É proibido comer, beber ou fumar nos laboratórios;
j) Manter as pias sempre limpas, pois podem ser necessárias em situações emergenciais.
10. ASPECTOS DE SEGURANÇA DO TRABALHO NA OPERAÇÃO DE ETAS E ETES

10.1. Riscos à Saúde no Trabalho em ETE’s

Os trabalhos em locais onde há esgoto é sempre difícil e perigoso, devido aos riscos químicos, físicos, biológicos e riscos de acidente local.

a) Riscos químicos:
 o Gases tóxicos:
 ▪ Gás carbônico (CO₂);
 ▪ Gás metano (CH₄);
 ▪ Gás sulfídrico (H₂S);
 ▪ Dióxido de enxofre (SO₂);
 ▪ Amônia (NH₃)
 o Baixo nível de oxigênio: ambientes com percentual de oxigênio abaixo de 20,8%. O nível pode diminuir por vários motivos, como reações químicas, ação bacteriológica ou acúmulo de outros gases.
 o Vapores, poeiras, névoas: em ambientes confinados a atmosfera deve ser considerada perigosa. Um ambiente tóxico pode ser causado por vários motivos como armazenagem de produtos, execução de serviços como soldagem, pintura, decapagem, desengraxamento, etc.
 o Líquidos tóxicos: o manuseio dos produtos químicos em solução que podem ser corrosivos, inflamáveis, explosivos, ou perigosos quando em contato com a pele, inalados ou ingeridos.

b) Riscos físicos:
 o Ruídos intensos: o ruído dentro de um local fechado é ampliado devido à acústica do local, prejudicando a comunicação interna e externa, assim como riscos à saúde humana.
 o Umidade: os trabalhos em superfícies escorregadias e lisas podem provocar quedas, levando a acidentes graves.
o Queda de objetos: em trabalhos a serem executados em diferentes níveis, deve-se tomar cuidado com a queda de objetos.

c) Riscos biológicos:
 o Bactérias: entre as doenças provocadas por bactérias, encontram-se a cólera, a meningite, a pneumonia, a tuberculose, as infecções por estreptococos e estafilococos, entre outras.
 o Fungos: os fungos penetram na pele sensível e podem produzir diversas doenças, como as micoses.
 o Protozoários: são organismos parasitas que podem provocar doenças como amebiase, leishmaniose, malária, entre outros.
 o Vermes: organismos que podem ser encontrados no corpo humano e em alguns animais, especialmente no intestino. Propagam-se por meio da água, alimentos e locais contaminados por fezes. Normalmente a infestação se dá no contato com a pele, pernas e pés ou pela ingestão.
 o Insetos: vários ambientes dentro de uma ETE são propícios para a proliferação de insetos, especialmente os da espécie Culex sp., conhecidos como mosquitos, pernilongos e muriçocas, os quais podem ser vetores de diversas doenças, e causam desconforto aos funcionários e vizinhança;
 o Vetores em geral: além de insetos, outros vetores de doenças podem frequentar uma ETE, como ratos, baratas, aves, animais domésticos, entre outros.

d) Riscos de acidentes:
 o Iluminação deficiente: uma iluminação deficiente pode provocar problemas de saúde como dores de cabeça e tonturas, além de esconder obstáculos e perigos em uma rotina operacional ou na manutenção de equipamentos;
 o Possibilidade de explosão ou incêndio: uma atmosfera pode se tornar inflamável ou explosiva na presença de oxigênio junto com outros gases no ar de um determinado ambiente.
 o Choques elétricos: equipamentos eletromecânicos e painéis de comando, bem como quaisquer instalações elétricas podem ser eventuais fontes de descargas elétricas.
o Risco de queda/obstáculos: ambientes desprotegidos e obstáculos mal sinalizados podem ser eventuais pontos de acidentes, como quedas, tropeços e escorregamentos.

10.2. Riscos à Saúde no Trabalho em ETA’s

As atividades inerentes à operação de estações de tratamento de água requerem contínua atenção dos indivíduos responsáveis, pois várias são as situações que envolvem riscos. Dentre elas podemos citar o preparo de soluções de produtos químicos e a realização de análises laboratoriais com reagentes químicos diversos. Abaixo estão listados os principais riscos existentes:

a) Riscos químicos:
 - Gases tóxicos:
 - Dióxido de Cloro (ClO₂);
 - Gás cloro (Cl₂);
 - Vapores, poeiras, névoas;
 - Líquidos tóxicos: o manuseio dos produtos químicos puros ou em solução e reagentes químicos podem afetar a saúde quando em contato com a pele, inhalados ou ingeridos.

b) Riscos físicos: os riscos físicos envolvidos na operação das ETA’s são semelhantes aos existentes na operação de ETE’s.

c) Riscos biológicos: a água bruta pode conter microrganismos que podem transmitir doenças, dentre elas podemos citar a febre tifoide, a cólera e a esquistossomose.

b) Riscos de acidentes: os riscos de acidente envolvidos na operação das ETA’s são semelhantes aos existentes na operação de ETE’s.

10.3. Equipamentos de Proteção Individual

É de fundamental importância, e é dever dos servidores do SAMAE a utilização dos equipamentos de proteção individual para a execução dos diversos serviços inerentes à operação e manutenção de ETA’s e ETE’s. Os principais equipamentos, utilizados na execução das tarefas diárias, estão abaixo elencados:
Para cada atividade deverão ser utilizados os equipamentos de proteção adequados ao serviço a ser executado.
11.REFERÊNCIAS BIBLIOGRÁFICAS

1. Catálogos diversos de fabricantes de equipamentos, acessórios e materiais de tratamento e laboratório.

Formatação revisada pela Comissão Executiva de Concurso Público, designada pela portaria n.º 24.736, de 02 de agosto de 2016.